TRIDONIC

LED Driver

Compact fixed output

Driver LC 45W 500-1400mA flexC C EXC

EXCITE series

Product description

- Constant current LED Driver
- Dimmable via ready2mains ${ }^{\text {TM }}$ Gateway
- Dimming range 15 - 100 \% (Depending on load. For details refer to chapter 4.7 Dimming in data sheet.)
- Adjustable output current between 500 and $1,400 \mathrm{~mA}$ via ready 2 mains ${ }^{T M}$ Programmer or 1 -select 2 plugs
- Max. output power 45 W
- Up to 88% efficiency
- Nominal life-time up to $100,000 \mathrm{~h}$
- 5-year guarantee

Housing properties

- Casing: polycarbonate, white
- Type of protection IP20

Interfaces

- ready 2 mains $^{T M}$ (configuration and dimming via mains)
- Terminal blocks: 45° push terminals

Functions

- Adjustable output current in 1-mA-steps (ready2mains ${ }^{\text {TM }}$, I-select 2)
- Dimmable via ready2mains ${ }^{\text {TM }}$ interface
- Protective features (overtemperature, short-circuit, overload, no-load, input voltage range)
- Suitable for emergency escape lighting systems acc. to EN 50172

Benefits

- Application-oriented operating window for maximum compatibility
- Best energy savings due to high efficiency and dimming via ready 2 mains $^{\text {TM }}$
- Flexible configuration via ready 2 mains ${ }^{T M}$ and I-select 2
- Reliability proven by life-time up to $100,000 \mathrm{~h}$ and

5-year guarantee

Typical applications

- For downlight, spotlight and decorative applications

\rightarrow

Standards, page 4

RoHS

Driver LC 45W 500-1400mA flexC C EXC
EXCITE series

Technical data

Rated supply voltage	220-240 V
Input voltage, AC	198-264V
Input voltage, DC	176-280 V
Mains frequency	$0 / 50 / 60 \mathrm{~Hz}$
Overvoltage protection	$320 \mathrm{~V} \mathrm{AC}$,
Typ. current (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load) (1) ©	230 mA
Typ. current ($220 \mathrm{~V}, 0 \mathrm{~Hz}$, full load, 68% dimming level) ${ }^{\text {® }} 173 \mathrm{~mA}$	
Leakage current (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load) ${ }^{\text {(1) © }}$	< $250 \mu \mathrm{~A}$
Max. input power	51.5 W
Typ. efficiency (at $230 \mathrm{~V} / 50 \mathrm{~Hz} /$ full load) ${ }^{\text {2 }}$	88\%
λ (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load) ${ }^{\text {(}}$	0.95
Typ. input current in no-load operation	22 mA
Typ. input power in no-load operation	0.59 W
In-rush current (peak / duration)	24.7 A / $268 \mu \mathrm{~s}$
THD (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load) ${ }^{\text {(}}$	< 10 \%
Time to light (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load) ${ }^{\text {(1) }}$	< 500 ms
Time to light (DC mode)	< 500 ms
Switchover time (AC/DC)	< 0.2 s
Turn off time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	< 50 ms
Output current tolerance ${ }^{\text {® © }}$	$\pm 5 \%$
Max. output current peak (non-repetitive)	soutput current + 35%
Output LF current ripple ($<120 \mathrm{~Hz}$)	$\pm 5 \%$
Max. output voltage (no-load voltage)	60 V
Dimming range ${ }^{\text {® }}$	15-100\%
Mains surge capability (between L-N)	1 kV
Mains surge capability (between L/N - PE)	2 kV
Surge voltage at output side (against PE)	< 500 V
Dimensions L×W $\times H$	$120 \times 70 \times 22 \mathrm{~mm}$

Ordering data				
Type	Article number	Packaging carton	Packaging pallet	Weight per pc.
LC 45W 500-1400mA flexC C EXC	$\mathbf{2 8 0 0 0 6 9 5}$	$10 \mathrm{pc}(\mathrm{s})$.	$960 \mathrm{pc}(\mathrm{s})$.	0.144 kg

Specific technical data

Type	Output current ${ }^{(4)}$ (6)	Min. forward voltage	Max. forward voltage	Max. output power	Typ. power consumption (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	Typ. current consumption (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	Max. casing temperature tc	Ambient temperature ta max.	I-select 2 resistor value ${ }^{\text {(6) }}$
	500 mA	20 V	50.0 V	25.0 W	28.7 W	135 mA	$85^{\circ} \mathrm{C}$	$-25 \ldots+50^{\circ} \mathrm{C}$	open
	550 mA	20 V	50.0 V	27.5 W	31.3 W	146 mA	$85^{\circ} \mathrm{C}$	$-25 \ldots+50^{\circ} \mathrm{C}$	$9.09 \mathrm{k} \Omega$
	600 mA	20 V	50.0 V	30.0 W	34.4 W	158 mA	$85^{\circ} \mathrm{C}$	$-25 \ldots+50^{\circ} \mathrm{C}$	$8.33 \mathrm{k} \Omega$
	650 mA	20 V	50.0 V	32.5 W	36.8 W	169 mA	$85^{\circ} \mathrm{C}$	$-25 . . .+50^{\circ} \mathrm{C}$	$7.69 \mathrm{k} \Omega$
	700 mA	20 V	50.0 V	35.0 W	39.6 W	180 mA	$85^{\circ} \mathrm{C}$	$-25 \ldots+50^{\circ} \mathrm{C}$	$7.14 \mathrm{k} \Omega$
	750 mA	20 V	50.0 V	37.5 W	41.9 W	190 mA	$85^{\circ} \mathrm{C}$	$-25 \ldots+50^{\circ} \mathrm{C}$	$6.67 \mathrm{k} \Omega$
	800 mA	20 V	50.0 V	40.0 W	44.5 W	201 mA	$85^{\circ} \mathrm{C}$	$-25 \ldots+50^{\circ} \mathrm{C}$	$6.25 \mathrm{k} \Omega$
	850 mA	20 V	50.0 V	42.5 W	47.4 W	213 mA	$85^{\circ} \mathrm{C}$	$-25 \ldots+50^{\circ} \mathrm{C}$	$5.88 \mathrm{k} \Omega$
	900 mA	20 V	50.0 V	45.0 W	50.0 W	224 mA	$85^{\circ} \mathrm{C}$	$-25 \ldots+50^{\circ} \mathrm{C}$	$5.56 \mathrm{k} \Omega$
LC 45W 500-1400mA flexC C EXC	950 mA	20 V	47.4 V	45.0 W	50.0 W	224 mA	$85^{\circ} \mathrm{C}$	$-25 \ldots+50^{\circ} \mathrm{C}$	$5.26 \mathrm{k} \Omega$
	$1,000 \mathrm{~mA}$	20 V	45.0 V	45.0 W	50.3 W	225 mA	$85^{\circ} \mathrm{C}$	$-25 . . .+50^{\circ} \mathrm{C}$	$5.00 \mathrm{k} \Omega$
	1,050 mA	20 V	42.9 V	45.0 W	50.2 W	225 mA	$85^{\circ} \mathrm{C}$	$-25 \ldots+50^{\circ} \mathrm{C}$	$4.76 \mathrm{k} \Omega$
	1,100 mA	20 V	40.9 V	45.0 W	50.9 W	228 mA	$85^{\circ} \mathrm{C}$	$-25 \ldots+50^{\circ} \mathrm{C}$	$4.55 \mathrm{k} \Omega$
	1,150 mA	20 V	39.1 V	45.0 W	50.9 W	228 mA	$85^{\circ} \mathrm{C}$	$-25 . . .+50^{\circ} \mathrm{C}$	$4.35 \mathrm{k} \Omega$
	1,200 mA	20 V	37.5 V	45.0 W	50.2 W	225 mA	$85^{\circ} \mathrm{C}$	$-25 \ldots+50^{\circ} \mathrm{C}$	$4.17 \mathrm{k} \Omega$
	1,250 mA	20 V	36.0 V	45.0 W	50.8 W	227 mA	$85^{\circ} \mathrm{C}$	$-25 \ldots+50^{\circ} \mathrm{C}$	$4.00 \mathrm{k} \Omega$
	1,300 mA	20 V	34.6 V	45.0 W	50.9 W	230 mA	$85^{\circ} \mathrm{C}$	$-25 \ldots+50^{\circ} \mathrm{C}$	$3.85 \mathrm{k} \Omega$
	$1,350 \mathrm{~mA}$	20 V	33.3 V	45.0 W	51.3 W	229 mA	$85^{\circ} \mathrm{C}$	$-25 . . .+50^{\circ} \mathrm{C}$	$3.70 \mathrm{k} \Omega$
	1,400 mA	20 V	32.1 V	45.0 W	51.5 W	230 mA	$85^{\circ} \mathrm{C}$	$-25 . . .+50^{\circ} \mathrm{C}$	short circuit (0Ω)

[^0]
Product description

- Ready-for-use resistor to set output current value
- Compatible with LED Driver featuring I-select 2 interface; not compatible with l-select (generation 1)
- Resistor is base isolated
- Resistor power 0.25 W
- Current tolerance $\pm 2 \%$ additional to output current tolerance
- Compatible with LED Driver series PRE and EXC

Example of calculation

- $R[k \Omega]=5 \mathrm{~V} / \mathrm{I}$ _out $[\mathrm{mA}] \times 1000$
- Resistor value tolerance $\leq 1 \%$; resistor power $\geq 0.1 \mathrm{~W}$; base isolation necessary
- When using a resistor value beyond the specified range, the output current will automatically be set to the minimum value (resistor value too big), respectively to the maximum value (resistor value too small)

Ordering data

Type	Article number	Colour	Marking	Current	Resistor value	Packaging bag	Weight per pc.
I-SELECT 2 PLUG 500MA BL	$\mathbf{2 8 0 0 1 1 1 4}$	Blue	0500 mA	500 mA	$10.00 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 525MA BL	$\mathbf{2 8 0 0 1 9 6 0}$	Blue	0525 mA	525 mA	$9.52 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 550MA BL	$\mathbf{2 8 0 0 1 1 1 5}$	Blue	0550 mA	550 mA	$9.09 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 600MA BL	$\mathbf{2 8 0 0 1 1 1 6}$	Blue	0600 mA	600 mA	$8.33 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 650MA BL	$\mathbf{2 8 0 0 1 1 1 7}$	Blue	0650 mA	650 mA	$7.69 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 700MA BL	$\mathbf{2 8 0 0 1 1 1 8}$	Blue	0700 mA	700 mA	$7.14 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 750MA BL	$\mathbf{2 8 0 0 1 1 1 9}$	Blue	0750 mA	750 mA	$6.67 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 800MA BL	$\mathbf{2 8 0 0 1 1 2 0}$	Blue	0800 mA	800 mA	$6.25 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 850MA BL	$\mathbf{2 8 0 0 1 1 2 1}$	Blue	0850 mA	850 mA	$5.88 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 900MA BL	$\mathbf{2 8 0 0 1 1 2 2}$	Blue	0900 mA	900 mA	$5.56 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 950MA BL	$\mathbf{2 8 0 0 1 1 2 3}$	Blue	0950 mA	950 mA	$5.26 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 1000MA BL	$\mathbf{2 8 0 0 1 1 2 4}$	Blue	1000 mA	$1,000 \mathrm{~mA}$	$5.00 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 1050MA BL	$\mathbf{2 8 0 0 1 1 2 5}$	Blue	1050 mA	$1,050 \mathrm{~mA}$	$4.76 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 1100MA BL	$\mathbf{2 8 0 0 1 1 2 6}$	Blue	1100 mA	$1,100 \mathrm{~mA}$	$4.55 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 1150MA BL	$\mathbf{2 8 0 0 1 1 2 7}$	Blue	1150 mA	$1,150 \mathrm{~mA}$	$4.35 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 1200MA BL	$\mathbf{2 8 0 0 1 1 2 8}$	Blue	1200 mA	$1,200 \mathrm{~mA}$	$4.17 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 1250MA BL	$\mathbf{2 8 0 0 1 1 2 9}$	Blue	1250 mA	$1,250 \mathrm{~mA}$	$4.00 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 1300MA BL	$\mathbf{2 8 0 0 1 1 3 0}$	Blue	1300 mA	$1,300 \mathrm{~mA}$	$3.85 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 1350MA BL	$\mathbf{2 8 0 0 1 1 3 1}$	Blue	1350 mA	$1,350 \mathrm{~mA}$	$3.70 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG 1400MA BL	$\mathbf{2 8 0 0 1 1 3 2}$	Blue	1400 mA	$1,400 \mathrm{~mA}$	$3.57 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT 2 PLUG MAX BL	$\mathbf{2 8 0 0 1 0 9 9}$	Blue	MAX	$\mathbf{M A X}$	$0.00 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg

1. Standards

Housing fulfils requirements for reinforced insulation according EN 60598-1.

EN 55015
EN 61000-3-2
EN 61000-3-3
EN 61347-1
EN 61347-2-13
EN 62384
EN 61547
According to EN 50172 for use in central battery systems
According to EN 60598-2-22 suitable for emergency lighting installations

2. Thermal details and life-time

2.1 Expected life-time

Expected life-time

Type	Output current	ta	$\mathbf{4 0}^{\circ} \mathbf{C}$	$\mathbf{5 0}{ }^{\circ} \mathbf{C}$
LC 45W 500-1400mA flexC C EXC	$500-1,400 \mathrm{~mA}$	tc	$75^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$
		Life-time	$>100,000 \mathrm{~h}$	$>100,000 \mathrm{~h}$

The LED Driver is designed for a life-time stated above under reference conditions and with a failure probability of less than 10%.

The relation of tc to ta temperature depends also on the luminaire design
If the measured tc temperature is approx. 5 K below tc max., ta temperature should be checked and eventually critical components (e.g. ELCAP) measured. Detailed information on request.

3. Installation / wiring

3.1 Circuit diagram

For wiring in dimming operation refer to the ready2mains Gateway data sheet.

3.2 Wiring type and cross section

The wiring can be in stranded wires with ferrules or solid with a cross section of $0.2-1.5 \mathrm{~mm}^{2}$.
Strip $8.5-9.5 \mathrm{~mm}$ of insulation from the cables to ensure perfect operation of the push-wire terminals
Use one wire for each terminal connector only.

LED module/LED Driver/supply
wire preparation:
$0.2-1.5 \mathrm{~mm}^{2}$

3.3 Loose wiring

Press down the "push button" and remove the cable from front.

3.4 Wiring guidelines

- The cables should be run separately from the mains connections and mains cables to ensure good EMC conditions.
- The LED wiring should be kept as short as possible to ensure good EMC. The max. secondary cable length is 2 m (4 m circuit).
- Secondary switching is not permitted.
- The LED Driver has no inverse-polarity protection on the secondary side. Wrong polarity can damage LED modules with no inverse-polarity protection.
- Wrong wiring of the LED Driver can lead to malfunction or irreparable damage
- To avoid the damage of the Driver, the wiring must be protected against short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.).

3．5 Hot plug－in

Hot plug－in is not supported due to residual output voltage of $>0 \mathrm{~V}$ ． If a LED load is connected，the device has to be restarted before the output will be activated again．
This can be done via mains reset or via interface ready2mains．

3．6 Earth connection

The earth connection is conducted as protection earth（PE）．If the LED Driver will be earthed，protection earth（PE）has to be used．
There is no earth connection required for the functionality of the LED Driver． Earth connection is recommended to improve following behaviour：
－Electromagnetic interferences（EMI）
－Transmission of mains transients to the LED output
In general it is recommended to earth the LED Driver if the LED module is mounted on earthed luminaire parts respectively heat sinks and thereby representing a high capacity against earth．

3.7 I－select 2 resistors connected via cable

For details see：
http：／／www．tridonic．com／com／en／download／technical／LCA＿PRE＿LC＿EXC＿ProductManual＿en．pdf．

3．8 Installation note

Max．torque at the clamping screw： $0.5 \mathrm{Nm} / \mathrm{M} 4$

4．Electrical values

4．1 Operating window

＿＿Operating window 100%
－－－－－－－－－－Operating window dimmed

Make sure that the LED Driver is operated within the given window under all operating conditions．Special attention needs to be paid at dimming and DC emergency operation as the forward voltage of the connected LED modules varies with the dimming level，due to the implemented amplitude dimming technology．Coming below the specified minimum output voltage of the LED Driver may cause the device to shut－down．
See chapter＂6．8 DC emergency operation＂for more information．

4．2 Efficiency vs load

4．3 Power factor vs load

4．4 THD vs load（without harmonic＜ 5 mA or 0.6% of the input current）

$\begin{array}{ll} & 500 \mathrm{~mA} \\ \text {－ーーー } & 1050 \mathrm{~mA}\end{array}$
－－－－－－ 1400 mA

100 \％load corresponds to the max．output power（full load）according to the table on page 2.

4.5 Maximum loading of automatic circuit breakers

Automatic circuit breaker type	C10	C13	C16	C20	B10	B13	B16	B20	Inrush current	
Installation \varnothing	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$I_{\text {max }}$	time
LC 45W 500-1400mA flexC C EXC	18	23	28	35	11	14	17	21	24.7 A	268 ¢s

Calculation uses typical values from ABB series S200 as a reference.
Actual values may differ due to used circuit breaker types and installation environment.
4.6 Harmonic distortion in the mains supply (at $230 \mathrm{~V} / 50 \mathrm{~Hz}$ and full load) in \%

	THD	3.	5.	7.	9.	11.
LC 45W 500-1400mA flexC C EXC	<9	<2	<2	<3	<2	<2

Acc. to 61000-3-2. Harmonics < 5 mA or $<0.6 \%$ (whatever is greater) of the input current are not considered for calculation of THD.

4.7 Dimming

Dimming range 15 to 100\%.
The minimum achievable dimming level depends on the connected load.
The operating window shows the minimum reachable power in dimmed state. The output power at minimum dimming level is 15% of absolute the max. output power of the LED Driver for all loads within the entire operating window.
For loads below the max. output power, the minimum dimming level is higher.
To determine the minimum dimming level for a certain load carefully read the operating window.
For further information please refer to your Tridonic sales contact.

5. Interfaces / communication

5.1 Control input ready2mains (L, N)

The digital ready2mains protocol is modulated onto the mains signal which is wired to the mains terminal (L and N).

6. Functions

6.1 Function: adjustable current

The output current of the LED Driver can be adjusted in a certain range. For adjustment there are two options available.

Option 1: I-select 2
By inserting a suitable resistor or third party resistor into the I-select 2 interface, the current value can be adjusted. The relationship between output current and resistor value can be found in the chapter "Accessories I-SELECT 2 Plugs".

Please note that the resistor values for I-select 2 are not compatible with I-select (generation 1). Installation of an incorrect resistor may cause irreparable damage to the LED module(s).

Resistors for the main output current values can be ordered from Tridonic (see accessories).

Option 2: ready2mains
Adjustment is done by the ready2mains Programmer and the corresponding configuration software (see ready2mains documentation).

A Current adjustment can only be done five times over ready2mains. To program the LED Driver a connected load is necessary that is within the operating window of the LED Driver.

The priority for current adjustment methods is I-select 2 followed by ready2mains (lowest priority).

6.2 ready 2 mains - configuration

The ready2mains interface enables the configuration of the mostly used parameters via the mains wiring.
In the case of EXC LED Driver, it is the LED output current as well as an optional lockbit to prevent any accidental configuration at a later stage.

The configuration is done via the ready2mains Programmer, either directly at the Programmer itself or via a respective software tool. For details on the configuration via ready2mains see the technical information of the Programmer and its tools.

6.3 ready 2 mains - dimming

The ready2mains interface also allows for mains-based group dimming, without the need for dedicated control wires.
The dimming commands from the control unit are transferred into the digital ready 2 mains protocol by a ready2mains Gateway. This device then broadcasts the dimming signal to all connected LED drivers via the mains wiring. For details on the dimming functionality via ready2mains see the technical information to ready2mains as well as to the Gateways.

6.4 Short-circuit behaviour

In case of a short-circuit at the LED output the LED output is switched off. After restart of the LED Driver the output will be activated again. The restart can either be done via mains reset or via interface ready2mains.

6.5 No-load operation

The LED Driver will not be damaged in no-load operation. The output will be deactivated and is therefore free of voltage. If a LED load is connected the device has to be restarted before the output will be activated again.

6.6 Overload protection

If the output voltage range is exceeded the LED Driver turns off the LED output. After restart of the LED Driver the output will be activated again. The restart can either be done via mains reset or via interface ready 2 mains.

7. Miscellaneous

7.1 Isolation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an isolation test with 500 V dc for one second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal.
The isolation resistance must be at least $2 \mathrm{M} \Omega$.
As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with 1500 V AC (or $1.414 \times 1500 \mathrm{~V}$ dC). To avoid damage to the electronic devices this test must not be conducted.

7.2 Conditions of use and storage

Humidity:	5% up to max. 85%, not condensed (max. 56 days $/$ year at 85%)
Storage temperature:	$-40^{\circ} \mathrm{C}$ up to max. $+80^{\circ} \mathrm{C}$

The devices have to be acclimatised to the specified temperature range (ta) before they can be operated.

7.3 Additional information

Additional technical information at www.tridonic.com \rightarrow Technical Data

Guarantee conditions at www.tridonic.com \rightarrow Services

Life-time declarations are informative and represent no warranty claim. No warranty if device was opened.

6.7 Overtemperature protection

The LED Driver is protected against temporary thermal overheating. If the temperature limit is exceeded the output current of the LED module(s) is reduced. The temperature protection is activated approx. $+5^{\circ} \mathrm{C}$ above tc max (see page 2). On DC operation this function is deactivated to fulfill emergency requirements.

6.8 DC emergency operation

The LED Driver is designed to operate on DC voltage and pulsed DC voltage. For a reliable operation, make sure that also in DC emergency operation the LED Driver is run within the specified conditions as stated in chapter "4.1 Operating window".

Light output level in DC operation (EOFi): 68\% (cannot be adjusted)

The voltage-dependent input current of Driver incl. LED module is depending on the used load.

The voltage-dependent no-load current of Driver (without or defect LED module) is for:
AC: < 22 mA
DC: $<2 \mathrm{~mA}$

[^0]: ${ }^{(1)}$ Valid at 100% dimming level.
 ${ }^{(2)}$ Depending on the selected output current.
 ${ }^{(3)}$ The min. achievable dimming level depends on the connected load. For details refer to chapter 4.7 Dimming in data sheet.
 (4) The table only lists a number of possible operating points but does not cover each single point. The output current can be set within the total value range in 1 -mA-steps.
 ${ }^{(5)}$ Not compatible with I-select (generation 1).
 ${ }^{6}$ () Output current is mean value

